a2 United States Patent

US009477635B1

10) Patent No.: US 9,477,635 B1

Kuscher et al. 45) Date of Patent: Oct. 25,2016
(54) GENERATING AN IDENTIFIER FOR A (56) References Cited
DEVICE USING APPLICATION U S. PATENT DOCUMENTS
INFORMATION -
. . 2010/0228736 Al* 9/2010 Kahlbaum Gl11B 19/122
(71) Applicant: Google Inc., Mountain View, CA (US) 707/747
2010/0281475 Al 112010 Jain et al.
(72) Inventors: Alexander F. Kuscher, San Francisco, 2010/0332996 Al 122010 Sarkaria
CA ([JS), Brian Chu, San FranCiSCO, 2011/0288932 Al 11/2011 Marks et al.
CA (US)
OTHER PUBLICATIONS
(73) Assignee: Google Inc., Mountain View, CA (US) IBM Corporation, “z/OS V1 R12.0 Communications Server IP
. Configuration Guide SC31-8775-17—Telnet configuration data set
(*) Notice: Subject. to any dlsclalmer,. the term of this custOI%liZation details”, pp. 1-46, © 2010.* -
patent is extended or adjusted under 35
U.S.C. 154(b) by 382 days. * cited by examiner
(21) Appl. No.: 13/692,786 Primary Examiner — Robert B Harrell
(74) Attorney, Agent, or Firm — Foley & Lardner LLP;
(22) Filed: Dec. 3, 2012 John D. Lanza
(51) Imt.CL (57) ABSTRACT
GO6F 13/00 (2006.01) A computer-implemented method for generating an identi-
GOGF 15/177 (2006.01) fier for a device includes identifying one or more applica-
(52) US. CL tions from a plurality of applications installed on a device;
CPC it GO6F 15/177 (2013.01) generating an identifier for the device based on the one or
(58) Field of Classification Search more identified applications; and providing the generated
CPC HO4L 29/06; HO4L 29/08072; HO4L identifier as identification for the device. Another computer-

29/08981; HO4L 41/0806; HO4L 41/12;

GOG6F 17/30949; GOG6F 17/30067; GOGF

17/30516; GOGF 17/30864; GOGF 17/30985;

GO6F 15/177

USPC vt 709/220; 707/747
See application file for complete search history.

implemented method for identifying a device includes:
receiving information that indicates one or more applica-
tions of a plurality of applications installed on a device; and
identifying the device using the received information.

20 Claims, 4 Drawing Sheets

Application/Package Installation Date
Abc March 7, 2010 1027
Bed January 5, 1999
Cde November 12, 2000 104
Def February 11, 2001
Efg May 9, 2010
Application/Package Installation Date 100~
Bed January 5, 1999 | 1028 .
Cde November 12, 2000 Identifier
Def February 11, 2001 * Token
Abc March 7, 2010 Identifier * Hash Value
Efg May 9, 2010 102C Generator * Siring
Application/Package Installation Date Version .
Abc March 7, 2010 2.0
Bed January 5, 1999 15
Cde November 12, 2000 1.0
Def February 11, 2001 8.0
Efg May 9, 2010 4.1
102D\| Device Clock Skew |—>
A ~ /
102

US 9,477,635 B1

Sheet 1 of 4

Oct. 25, 2016

U.S. Patent

I "OId

[]
*

Buns ,

A

onjeA yseH .
usyo]
Jaynuap

001

Jojessuss)
J8ypuspi

c0l
A

MaYS 300[)) 90IA8(] _/omor

L'y 0L0Z ‘6 Ael 613
08 1002 ‘| | Aenigad Jod
|0 0002 ‘Z| JoquanoN op)
| S 6661 ‘G Aenuer pog
0¢ 0102 ‘L Yolely oqy
uoisiap ajeq uonejeisu; abeysequonesddy

/
A 0L0Z '6 AelN b3
0L0Z ‘2 Yotel oqy
) 1002 ‘|1 Aeniged Jad
) 0002 ‘2| JaquanoN C1%)
gz0L-"| 6661 ‘G Aenuer pog
ajeq uonejeysu; abeyoeq/uonesiddy
0L0Z ‘6 Ael 63
1002 ‘L | Aeniga jod
. 0002 ‘2 JequanoN opD
6661 ‘G Aenuer pog
ve0L-"1 010z *1 yore o9y

ajeq uonejeisu; abeyoedjuonesijddy

US 9,477,635 B1

Sheet 2 of 4

Oct. 25, 2016

U.S. Patent

J9)ndwo) jeuosiad

TSRO]

020z

ESRO

¢ 9OId

Jonqusig
1us1uo)

\-0L¢

uoieuwloju|
Aoy

YIOMISN

¢cce

USeH »
HOG/109]|0D -
Buijesauas) Jalyauapi

\-v22
J19ndwo)

gz0z "]
921A3Q 9IqOIN
waysAg Bunelad
abeyoed = uoneslddy
\4gzlg \vzlz
JudUO pajjeIsu| AjJualing
USeH - 1S -
H0S/109]|10D » SN|EA YSeH .
Bunelssuor) Buipinoig 48ysliqnd
Jayuap| UCIBWLIOU|
/ /
4 - .
ol M:\N vZ0z 902

022

US 9,477,635 B1

Sheet 3 of 4

Oct. 25, 2016

U.S. Patent

€ 9OId
1 I mwmwmuj | | 1 1 1
m DT _ e~ | _ “
| _ | — ONEWIORYUa] m “
| | | | | - UORBIEISUI(L yee
| PEENA N i | | !
| 0ge~ | lolwepp | | | m
w%;_@ﬁ_o_a_gwo | ol w w w m
> Jeyjuspl | i | | | |
T oze | opewioN] L m m m m
| | | ~yze) UORRWIOMESIT © oo ialiany = |
m m | | G
0z | fienjpq jueoy |
. \8l€ [senbeyJuauo] | |
“uoposies | “ole . fienpg py ‘
| | N:M:Jw@ X Py | | | |
| o nsey ! ! | | !
m BANCE e | | m m
m ' oie | | ~80E jsanbay py | uogeeueg
| | | | | | Joyusp \r90€
u v0e | Kanpag uejuo) |
| | ! | "~ \-20€ | 3senbeyUajuo) !
J0}EJaUSS) 1aBeuepy JONIBS Wiaysignd « * = hiaysiand Noamag * + = loomeq
Joy3uep| JoyRuep) py uejuo) N 1280) J28)
I/oom

US 9,477,635 B1

Sheet 4 of 4

Oct. 25, 2016

U.S. Patent

seoineq 0P

ndinoandul

¥ 'Old

~
[111

Jndinoandul

80IAS(] 9bRI0IS

owv/

AIowaly

oGy

L

S

[015%
10SS8201d

US 9,477,635 Bl

1
GENERATING AN IDENTIFIER FOR A
DEVICE USING APPLICATION
INFORMATION

BACKGROUND

Cookies are used by some browsers, applications and
other programs to keep track of activities in a network. Some
operating systems provide sandboxing that may affect users’
browsing behaviors. For example, embedded browsers
(bundled with the operating system) are quarantined from
the system and the only low-level access is to download
attachments to be temporarily consumed by a read-only
view. Mobile applications published by third parties gener-
ally run unprivileged on the device and only have access to
their own respective sandbox for persisting data. Simulta-
neous processes are sometimes discouraged to simplify task
management and restrict battery usage. Sometimes, the
above cause user content consumption to be fragmented
among multiple applications. As a result, events that are part
of a single session can appear unrelated.

SUMMARY

In a first aspect, a computer-implemented method for
generating an identifier for a device includes identifying one
or more applications from a plurality of applications
installed on a device; generating an identifier for the device
based on the one or more identified applications; and pro-
viding the generated identifier as identification for the
device.

Implementations can include any or all of the following
features. The identification includes determining at least a
name of the one or more applications, and generating the
identifier includes hashing the determined name. The
method further includes determining package versions of the
one or more applications and using the determined package
versions in generating the identifier. The method further
includes determining an installation order of the one or more
applications and using the determined installation order in
generating the identifier. The method further includes deter-
mining installation dates of the one or more applications and
using the determined installation dates in generating the
identifier. The method further includes determining a clock
skew of the device and using the determined clock skew in
generating the identifier. The one or more applications
includes all of the plurality of applications installed on the
device. The method further includes subsequently determin-
ing addition or removal of an application on the device,
generating a new identifier based on the determination, and
providing the generated new identifier. The method further
includes indicating that the generated new identifier replaces
the generated identifier.

In a second aspect, a computer program product is tan-
gibly embodied in a computer-readable storage medium and
includes instructions that when executed by a processor
perform a method for generating an identifier for a device.
The method includes identifying one or more applications
from a plurality of applications installed on a device; gen-
erating an identifier for the device based on the one or more
identified applications; and providing the generated identi-
fier as identification for the device.

In a third aspect, a computer-implemented method for
identifying a device includes: receiving information that
indicates one or more applications of a plurality of applica-
tions installed on a device; and identifying the device using
the received information.

10

15

20

25

30

35

40

45

55

60

65

2

Implementations can include any or all of the following
features. The information includes at least names of the one
or more applications, and the method further includes hash-
ing the determined names, wherein identifying the device
includes comparing a hash result with a known identifier.
The information also indicates package versions of the one
or more applications that are used in the hashing. The
information also indicates an installation order of the one or
more applications, and the installation order is used in the
hashing. The information also indicates installation dates of
the one or more applications, and the installation dates are
used in the hashing. The information also indicates a clock
skew of the device, and the clock skew is used in the
hashing. The one or more applications includes all of the
plurality of applications installed on the device. The hash
result is a new identifier for the device, and the method
further includes substituting the new identifier for an earlier
identifier for the device. The method further includes sub-
sequently generating a reset identifier for the device after
changes in what applications are installed on the device.

In a fourth aspect, a computer program product is tangibly
embodied in a computer-readable storage medium and
includes instructions that when executed by a processor
perform a method for generating an identifier for a device.
The method includes: receiving information that indicates
one or more applications of a plurality of applications
installed on a device; and identifying the device using the
received information.

Implementations can provide any or all of the following
advantages. A device identifier can be generated based on
information about which applications or packages are
installed on the device. A device can generate a unique
identifier based on its application installations, and the
identifier can be forwarded without revealing the identities
of the applications. A robust and flexible fingerprinting
technique for devices can be used to identify separate events
that are related to each other, for example because the events
were generated by different applications during a common
browsing session.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
Other features and advantages will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 schematically shows an identifier being generated
from information.

FIG. 2 shows an example of a system that can be used for
generating an identifier for a device.

FIG. 3 shows an example of a process flow for generating
an identifier for a device.

FIG. 4 is a block diagram of a computing system that can
be used in connection with computer-implemented methods
described in this document.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

This document describes examples of generating an iden-
tifier for a device (e.g., a smartphone, tablet or personal
computer, etc.) using information about applications
installed on the device. In some implementations, a device
can generate a list of its currently installed applications or
other packages, and from that list an identifier unique to that

US 9,477,635 Bl

3

device can be generated. For example, such an identifier can
serve as identification for the device during network activi-
ties.

FIG. 1 schematically shows an identifier 100 being gen-
erated from one or more portions of information 102. The
information 102 here includes alphanumerically sorted
information 102A, chronologically sorted information
102B, information 102C that includes a version number, and
information 102D that indicates a clock skew for a particular
device. Any or all of the portions of information 102 can be
identified by the device and then be processed, by the device
itself or another system, to create the identifier 100.

One or more portions of the information 102 is provided
to an identifier generator 104 that processes the information
to generate the identifier 100. For example, the identifier 100
can include a token hash value and/or other string that serves
to uniquely identify the device to which the information 102
relates.

The information 102A indicates multiple applications or
packages, here named Abc, Bed, Cde, Def and Efg for
simplicity. In some implementations, the identified applica-
tions/packages may be programs or other software, some of
which has been downloaded or otherwise installed on the
device by a user, and some of which may have been
preinstalled by the device manufacturer. Any kind of appli-
cations can be included, such as browsers, multimedia
players, email clients, instant-messaging applications,
social-networking applications, games, apps, utility pro-
grams, diagnostic tools, antivirus programs, word proces-
sors, office software, videoconferencing applications or
cloud service applications, to name just a few examples.

Any number of applications or packages can be indicated
by the information 102A. In some implementations, the
information 102A indicates the complete set of installed
applications or packages on the device. In other implemen-
tations, only a subset of the installed contents are included
in the list. For example, only content installed before a
certain cutoff date, or only content larger than a certain size,
may be included.

The information 102A is currently sorted in alphanumeri-
cal order. That is, the applications or packages are sorted in
order of their names. One or more other types of data may
also be included in the information 102A. For example,
installation dates are here indicated for each application/
package.

When the information 102A is processed by the identifier
generator 104, optionally in combination with other infor-
mation, the identifier 100 can be generated. In some imple-
mentations, a hash function is applied to the information
102A to generate a unique hash result that is specific to the
contents of the information 102A. For example, the appli-
cation/package names can be processed in the current order
(optionally together with the installation dates and/or other
information) to generate the identifier.

Turning now to the information 102B, it also indicates
names of applications/packages installed on the device.
However, the information is sorted by installation date. For
example, this causes the names to be listed in a different
order than in the information 102A. When the chronologi-
cally listed names of the information 102B (optionally
together with the installation dates and/or other information)
are provided to the identifier generator 104, a different
identifier 100 is generated than in the previous example.
That is, the different order of the application/package names
causes a different identifier to be generated. For example,
this can help avoid identifier collisions, in which two dif-
ferent devices would be assigned the same identifier.

10

15

20

25

30

35

40

45

50

55

60

65

4

The information 102C indicates application/package
names, installation dates and also version numbers for the
respective package/application. In some implementations,
the version numbers are taken into account to distinguish
two or more devices from each other based on a difference
in the version numbers of the installed contents. When
versioning information is taken into account, one or more
other types of information (e.g., installation dates) can also
be considered. As another example, the order in which the
application/package names are sorted (e.g., in alphanumeric
order in the information 102C) can also be taken into
account by the identifier generator 104.

The device clock skew 102D can indicate how the time
shown by a clock in the device differs from some reference
clock. In some implementation, another clock in the same
network as the device can be referenced. For example, a
clock in the system that operates the identifier generator 104
can be used as a reference. By combining the clock skew
104D with some information about the applications/pack-
ages installed on the device (e.g., any of the information
portions 102A, B or C) the identifier 100 can be generated
uniquely for this particular device.

FIG. 2 shows an example of a system 200 that can be used
for generating an identifier for a device. The identifier can be
generated locally on the device to which it applies or at a
location other than on the device.

The system 200 here includes multiple user devices 202
that are connected by any kind of network 204 (e.g., a local
network or the internet) to one or more other devices and
systems. Any suitable kind of user devices 202A-C can be
included. For example, the user device 202B is here a mobile
device, such as a smartphone, tablet or other handheld
device. As another example, the user device 202C is here a
personal computer, such as a laptop or desktop computer.

The system 200 can include one or more publisher
systems 206 connected to the network 204 and/or to the user
devices 202. In some implementations, the publisher system
206 includes one or more web servers. For example, the
publisher system 206 can make content available to the user
devices 202, such as in form of one or more (web) pages that
can be viewed and manipulated in a browser 208 or other
program.

The system 200 can include one or more content distribu-
tor systems 210 connected to the network 204, to the user
devices 202 and/or to the publisher system 206. In some
implementations, the system 210 provides additional infor-
mation or other content for one or more content portions
provided by the publisher system 206. For example, the
system 210 can provide one or more advertisements or other
content.

In the system 200, one or more of the user devices 202 can
be identified based on what applications or other software it
has installed. For example, the user device 202A includes
currently installed content 212 that runs on a suitable
operating system 214. The currently installed content can
include one or more applications 212A and/or one or more
packages 212B, which can be bundles for installing an
application or other software. The applications 212A and the
packages 212B can include any type of software mentioned
in the above description of information 102 (FIG. 1), for
example.

The user device 202A here includes an identifier gener-
ating module 216. In some implementations, the device
202A uses the module 216 to generate a unique identifier for
itself based on the content 212 that the device currently has

US 9,477,635 Bl

5

installed. This can be considered a local generation of
identifier; in an example below will be described a non-local
generation of an identifier.

The identifier generating module 216 can perform collec-
tion and sorting of information. In some implementations,
the module can collect any or all of the information 102
described above (FIG. 1). In some implementations, the
module can query the operating system 214 to learn what the
currently installed content 212 is. In some implementations,
the module can query one or more protocol handlers (not
shown) in the device 202A for relevant information. For
example, the installed applications may have identifiable
protocols that allow them to perform certain actions on the
devices. From a list of such protocols installed applications
can be determined. In some implementations, the installed
content—e.g., mobile apps for one or more technology
platforms of smartphones—can participate in a registration
routine where the content reports to the device or to an
external resource that the content has been installed. The
module 216 can consult the record of such installation
registrations to learn what content is installed on this par-
ticular device.

Having collected relevant information about the currently
installed content 212, the identifier generating module 216
can process the information as part of generating the device
identifier. In some implementations, the module 216 can sort
the collected information in one or more ways. The infor-
mation can be sorted alphanumerically, chronologically, by
size, by category, by type, by manufacturer and/or by
frequency of use, to name just a few examples.

The processing can involve hashing some or all of the
information. In some implementations, the names of
installed applications and packages can be hashed into one
or more hash values, which are then used to generate the
identifier for the device. For example, in situations where the
order of information affects the resulting hash value(s), the
information can be sorted in some particular way before the
hashing. The information aspect used for sorting can be, but
is not necessarily, present in the information that is to be
processed. For example, in the information 102B (FIG. 1)
the application/package names are sorted by the dates they
were installed, and the installation date information (e.g.,
“Jan. 5, 1999” for the application/package Bed in FIG. 1)
may or may not be included when the hashing is performed.

The user device 202A can include an information provid-
ing module 218 that can provide one or more portions of
information to another device or resource. In some imple-
mentations, the module 218 provides the generated identifier
(e.g., a hash value) to the publisher system 206 and/or to the
content distributor system 210. For example, this can be
done as a form of identification when the device 202A is
interacting with either system, such as when the device
requests content (e.g., a page or an ad). The module 218 can
provide the generated identifier when requested, and/or by
its own initiative.

A generated identifier can be used for one or more
purposes. For example, the system 200 can include a com-
puter system 220 connected to the network 204 and/or to any
other system or device. The computer system 220 can be
configured to collect information about activities on the
network, such as about consumption of content (e.g., from
the system 206 and/or 210). The system 220 can include a
network activity information repository 222 in which is
collected knowledge about network activities, including, but
not limited to, browsing sessions, page downloads, pur-
chases, servings of ads or other content, clicks on ads or
other content, or conversions. For example, the repository

10

15

20

25

30

35

40

45

50

55

60

65

6

222 can store information about content that was viewed
and/or interacted with using the browser(s) 208.

For situations in which the systems discussed here collect
personal information about users, or may make use of
personal information, the users may be provided with an
opportunity to control whether programs or features collect
personal information (e.g., information about a user’s social
network, social actions or activities, profession, a user’s
preferences, or a user’s current location), or to control
whether and/or how to receive content from the content
server that may be more relevant to the user. In addition,
certain data may be anonymized in one or more ways before
it is stored or used, so that personally identifiable informa-
tion is removed. For example, a user’s identity may be
anonymized so that no personally identifiable information
can be determined for the user, or a user’s geographic
location may be generalized where location information is
obtained (such as to a city, ZIP code, or state level), so that
a particular location of a user cannot be determined. Thus,
the user may have control over how information is collected
about him or her and used by a content server.

However, the network activity information 222 some-
times may not fully reflect the events on the network 204.
For example, many users have multiple applications (e.g.,
mobile apps) installed on a single device, and sometimes
switch between different apps while in the process of per-
forming a common task. From the network perspective (e.g.,
as seen by the systems 206, 210 and/or 220), this can
fragment what in actuality is a single user session into a
number of seemingly unrelated threads.

The generated identifier can be used with the network
activity information repository 222. In some implementa-
tions, the generated identifie—which can uniquely repre-
sent an individual user device based on its installed con-
tent—can be used as a seed for identifying events that
belong to a common session. For example, if the user device
202A provides the same generated identifier (e.g., by way of
the information providing module 218) in multiple different
events, then the system 220, or another system, can use the
common identifier to determine that it is indeed the same
device involved in the different activities that have been
registered.

An identifier can also or instead be generated elsewhere
than on the device to which the identifier relates. In some
implementations, the information providing module 218 can
provide an information collection (e.g., a list) of the appli-
cation names, package names, and/or other information that
is relevant for identifier generation. For example, the appli-
cation/package names can be collected on the device 202A
and provided to the computer system 220.

The computer system 220 can include an identifier gen-
erating module 224 that can process the received informa-
tion and generate an identifier. In some implementations, the
module 224 can feed the received information to a hash
function that produces one or more hash values. The infor-
mation may or may not be sorted before such processing
begins.

One approach involves generating an isolated fingerprint
for each known package name. In some implementations,
this can be done by generating a Bloom filter of all package
names on the device. For example, the names of known
packages can then be queried against the Bloom filter one at
a time, to see if that package is included in the device’s set
of packages.

FIG. 3 shows an example of a process flow 300 for
generating an identifier for a device. The process flow can be
performed in one or more systems, by processor(s) execut-

US 9,477,635 Bl

7

ing machine-readable instructions. For example, the system
200 (FIG. 2) can be used in whole or in part.

The process flow 300 involves N number of user devices
schematically indicated as user device' through user device,,
respectively, where N=1, 2, The process flow 300
involves M number of content publishers schematically
indicated as content publisher, through content publisher,,
respectively, where M=1, 2, The process flow 300
involves at least one ad server or provider of other content.
Finally, the process flow 300 involves an identifier manager
and an identifier generator.

Operations 302-316 exemplify a request and delivery of
content where the identifier is generated locally on the user
device. At 302, user device, sends a content request to
content publisher, . For example, the user device, is request-
ing a particular resource (e.g., a web page). At 304, the
content publisher, responds by delivering the requested
content (e.g., the web page). At 306, the user device,
generates an identifier for itself. At 308, the user device,
sends a request for an ad or other content to the ad server or
provider of other content. In this example, the request also
includes the generated identifier. At 310, the ad server or
provider of other content forwards at least the identifier to
the identifier manager. In some implementations, the iden-
tifier manager uses the identifier as a seed to connect
separate events as being part of a common session. For
example, it can be determined whether the user device, has
previously responded favorably (e.g., clicked on) to other
content (e.g., an ad). At 312, the identifier manager provides
a result to the ad server or provider of other content. At 314,
an ad or other content is selected based on the available
information. At 316, the ad or other content is provided to
the user device'.

Operations 318-332 exemplify a request and delivery of
content where the identifier is generated elsewhere than on
the user device. For clarity, some operations similar to those
described in the previous example are mentioned here as
well, while others are not repeated. At 318, user device,,
sends a content request to content publisher,,. At 320, the
content publisher,, responds by delivering the requested
content. At 322, the user device,, generates a list or other
information collection regarding what applications/pack-
ages are installed on the device. At 324, the user device,,
provides the list or collection to the ad server or provider of
other content. At 326, at least some of the received infor-
mation is provided to the identifier generator. At 328, the
identifier generator generates an identifier for the user devi-
cey. At 330, the identifier is provided to the ad server or
provider of other content. At 332, the identifier can be
provided to the identifier manager. For example, a record of
network activities can be updated with new information
about the user devicey.

Operations 334-338 exemplify an update by a user device
when there is a change in the installed applications/pack-
ages. For clarity, some operations similar to those described
in the previous example are mentioned here as well, while
others are not repeated. At 334, the user device, installs
another application or package. The also generates a new
identifier based on the new set of installations. At 336, the
user device, provides the new identifier and/or information
about the new installation to the ad server or provider of
other content. For example, the user device, can in effect
communicate that “this is the new identifier for user
device,.” At 338, the new identifier is provided to the
identifier manager to update one or more records. Register-
ing the newly generated identifier allows for continuity
when the installed set of applications/packages changes. For

10

15

20

25

30

35

40

45

50

55

60

65

8

example, earlier network activities by the user device, (e.g.,
visiting a certain web page) that were associated with the old
identifier can now be taken into consideration when content
(e.g., an ad) is to be provided to the same device having the
new identifier.

An identifier can be reset for one or more reasons. One
purpose of a hash function can be to protect sensitive user
information while still maintaining the uniqueness of the
data. In some implementations, the identifier manager can
then reset the identifier when appropriate. As more infor-
mation is added to the source—to make it more unique and
less likely to collide—it may become more trivial to guess
or positively identify the user. For example, with periodic
reporting by the user device, each new identifier can be seen
as a mutation of the information on which the identification
is based, and with each mutation the probability of correctly
identifying the user device (i.e., to distinguish it from other
devices) may decrease.

The following example relates to how a device ID can
change when a device goes through variations in the set of
installed applications. In implementations where a hash is
performed on the installed applications (optionally with
other information), installing new applications will change
the hash value (device ID) that the function generates. The
hash function can be chosen such that a small change will
only have a small effect in the resulting hash. For example,
the change in the hash value can be small when only one
application is added or removed.

The following can apply in a particular implementation:

Installed application identifiers: A, B, C, D

Hash-Function to get device ID: h(x)=sum(num(x)),
where e.g., num(A)=1,

num(B)=2 . . . h(A,B,C,D)=10

Similarity function: s(y,z) where y and z are results of
hash functions=s(y,z)=1

if y=z or y+/-y/2=z and O else

In the above example, each installed application is given
a number and the hash function computes the sum thereof.
Two separate device IDs are then deemed to match (i.e., the
similarity function is 1) if one of the hash numbers is
50-150% of the other hash number. That is, the source for the
hash function in this example is numerical IDs pre-assigned
to each application.

In another implementation, the source for the hash func-
tion can instead be a list. For example, the order of instal-
lations can be taken into account so as to distinguish, say, a
device where first the Angry Birds game and thereafter
Solitaire were installed, from another device where those
two applications were installed in the opposite order. In
some implementations, installation dates are taken into
account. For example, the respective dates when applica-
tions first appeared on the device can be used to distinguish
that device from another one that has the same installed
programs.

That is, choosing the right hash function can make the
addition of one application have a small impact, while
having a different set of applications makes a big impact. A
similarity function is used that compares two or more
hashes, for example based on knowledge of the hash func-
tion. In some implementations, the device IDs take into
account timestamps and/or other parameters. For example,
this can help minimize the impact of small changes on the
hash value while a separate set of applications will have a
big effect on the hash value and therefore will result in a
non-similarity.

The following example relates to when a device ID
reaches a threshold where there is too little probability of

US 9,477,635 Bl

9

correctly identifying the device. This determination involves
similarity. If nothing on the device changed, the hash value
will be exactly the same and proving similarity is then trivial
(with some error in case two people have identical setups).
If the system receives a new hash value that according to the
similarity function is very similar to an earlier hash value
those two hash values will be associated with each other. The
next hash value coming in will be compared to the latest
known hash value for each device. Changes in a device can
therefore be chained.

In some implementations, the threshold can be selected
based on observing the system run for a while. Installing one
application will likely result in a small enough change that
one can confidently enough still recognize the device. On the
other hand, if five applications and other criteria are changed
at once on a device that has ten installed applications, this
will likely result in no match being detected. However,
history can be taken into account. If the user installs five
applications over the course of a day and the system receives
a hash value in between each installation, a similarity
between the individual hash values can be determined. On
the other hand, if the system does not receive hash values
between the installations, it will likely lose that session (i.e.,
fail to recognize that it is the same device involved). As a
counterexample, if a user has 200 applications installed, the
design of the hash function likely is more robust against a
change of merely five applications since it is such a small
portion of the whole.

FIG. 4 is a schematic diagram of a generic computer
system 400. The system 400 can be used for the operations
described in association with any of the computer-imple-
ment methods described previously, according to one imple-
mentation. The system 400 includes a processor 410, a
memory 420, a storage device 430, and an input/output
device 440. Each of the components 410, 420, 430, and 440
are interconnected using a system bus 450. The processor
410 is capable of processing instructions for execution
within the system 400. In one implementation, the processor
410 is a single-threaded processor. In another implementa-
tion, the processor 410 is a multi-threaded processor. The
processor 410 is capable of processing instructions stored in
the memory 420 or on the storage device 430 to display
graphical information for a user interface on the input/output
device 440.

The memory 420 stores information within the system
400. In some implementations, the memory 420 is a com-
puter-readable medium. The memory 420 is a volatile
memory unit in some implementations and is a non-volatile
memory unit in other implementations.

The storage device 430 is capable of providing mass
storage for the system 400. In one implementation, the
storage device 430 is a computer-readable medium. In
various different implementations, the storage device 430
may be a floppy disk device, a hard disk device, an optical
disk device, or a tape device.

The input/output device 440 provides input/output opera-
tions for the system 400. In one implementation, the input/
output device 440 includes a keyboard and/or pointing
device. In another implementation, the input/output device
440 includes a display unit for displaying graphical user
interfaces.

The features described can be implemented in digital
electronic circuitry, or in computer hardware, firmware,
software, or in combinations of them. The apparatus can be
implemented in a computer program product tangibly
embodied in an information carrier, e.g., in a machine-
readable storage device, for execution by a programmable

10

15

20

25

30

35

40

45

50

55

60

65

10

processor; and method steps can be performed by a pro-
grammable processor executing a program of instructions to
perform functions of the described implementations by
operating on input data and generating output. The described
features can be implemented advantageously in one or more
computer programs that are executable on a programmable
system including at least one programmable processor
coupled to receive data and instructions from, and to trans-
mit data and instructions to, a data storage system, at least
one input device, and at least one output device. A computer
program is a set of instructions that can be used, directly or
indirectly, in a computer to perform a certain activity or
bring about a certain result. A computer program can be
written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment.

Suitable processors for the execution of a program of
instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors of any kind of computer. Gen-
erally, a processor will receive instructions and data from a
read-only memory or a random access memory or both. The
essential elements of a computer are a processor for execut-
ing instructions and one or more memories for storing
instructions and data. Generally, a computer will also
include, or be operatively coupled to communicate with, one
or more mass storage devices for storing data files; such
devices include magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non-volatile memory, including by way of example semi-
conductor memory devices, such as EPROM, EEPROM,
and flash memory devices; magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, ASICs
(application-specific integrated circuits).

To provide for interaction with a user, the features can be
implemented on a computer having a display device such as
a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide input to the computer.

The features can be implemented in a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system can be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, e.g., a LAN, a WAN, and the computers
and networks forming the Internet.

The computer system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a network, such as the described
one. The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

A number of implementations have been described. Nev-
ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of

US 9,477,635 Bl

11

this disclosure. Accordingly, other implementations are
within the scope of the following claims.

What is claimed is:

1. A computer-implemented method for identifying a
mobile user device, the method comprising:

receiving, by one or more computers having receiving

circuitry, from the mobile user device, information
associated with each of a plurality of applications
installed on the mobile user device;
generating, by one or more computers having generating
circuitry, an identifier for the mobile user device using
the received information associated with each of the
plurality of applications installed on the mobile user
device, wherein the information is processed to gener-
ate an identifier that obscures identifying information
of the plurality of applications and wherein generating
the identifier includes calculating the identifier using
numerical values associated with the information asso-
ciated with each of the plurality of applications;

determining, by the one or more computers having deter-
mining circuitry, a numerical value of a previously
stored identifier for the mobile user device is within a
predetermined percentage of a numerical value of the
generated identifier;

using, by the one or more computers having collecting

circuitry, the previously stored identifier to collect
information about activity of the mobile user device on
a network including activity associated with more than
one of the plurality of applications.

2. The computer-implemented method of claim 1,
wherein the information includes names of the plurality of
applications, wherein calculating the identifier comprising
hashing numerical values associated with the determined
names.

3. The computer-implemented method of claim 2, the
method further comprising substituting the generated iden-
tifier for the previously stored identifier for the mobile user
device.

4. The computer-implemented method of claim 3, further
comprising generating a new identifier for the mobile user
device responsive to a change in installed applications on the
mobile user device.

5. The computer-implemented method of claim 2,
wherein the information also indicates package versions of
each of the plurality of applications to be used in the
hashing.

6. The computer-implemented method of claim 2,
wherein the information also indicates an installation order
of each of the plurality of applications to be used in the
hashing.

7. The computer-implemented method of claim 2,
wherein the information also indicates installation dates of
each of the plurality of applications to be used in the
hashing.

8. The computer-implemented method of claim 2,
wherein the information also indicates a clock skew of the
mobile user device relative to a reference clock to be used
in the hashing.

9. The computer-implemented method of claim 1,
wherein the plurality of applications includes all applica-
tions installed on the mobile user device.

10. A computer-implemented method for generating an
identifier for a mobile user device, the method comprising:

receiving, by one or more computers having receiving

circuitry, an ad request comprising information associ-
ated with a plurality of applications installed on the
mobile user device;

30

35

40

45

50

55

60

12

generating, by the one or more computers having gener-
ating circuitry, an identifier for the mobile user device
based on the information associated with the plurality
of applications installed on the mobile user device
including an order of installation of the plurality of
applications installed on the mobile user device;

using, by the one or more computers having identifying
circuitry, the generated identifier to identify the mobile
user device responsive to receiving the ad request;

selecting, by the one or more computers having selecting
circuitry, an ad from a plurality of ads based on
identifying the mobile user device; and

sending, by the one or more computers having sending

circuitry, the selected ad to the mobile user device
responsive to the received ad request.
11. The computer-implemented method of claim 10,
wherein the generating further comprises determining a
name of each of the plurality of applications, and hashing the
received information including the determined name of each
of the plurality of applications to generate the identifier.
12. The computer-implemented method of claim 11, fur-
ther comprising determining package versions of each of the
plurality of applications and using the determined package
versions to generate the identifier.
13. The computer-implemented method of claim 11,
wherein generating the identifier further comprises sorting
the determined name of each of the plurality of applications
in alphanumeric order and using the sorted determined
names to generate the identifier.
14. The computer-implemented method of claim 11, fur-
ther comprising determining installation dates of the plural-
ity of applications and using the determined installation
dates to generate the identifier.
15. The computer-implemented method of claim 10, fur-
ther comprising generating a new identifier responsive to
addition or removal of an application from the mobile user
device and providing the generated new identifier.
16. The computer-implemented method of claim 15, fur-
ther comprising indicating that the generated new identifier
replaces the generated identifier.
17. The computer-implemented method of claim 10, fur-
ther comprising determining a clock skew of the mobile user
device relative to a reference clock and using the determined
clock skew to generate the identifier.
18. The computer-implemented method of claim 10,
wherein the plurality of applications includes all applica-
tions installed on the mobile user device.
19. A computer program product tangibly embodied in a
non-transitory computer-readable storage medium and com-
prising instructions that when executed by a processor
perform a method for generating an identifier for a mobile
user device, the method comprising:
receiving, using receiving circuitry, an ad request com-
prising information associated with a plurality of appli-
cations installed on the mobile user device;

calculating, using calculating circuitry, a clock skew of
the mobile user device relative to a reference clock
from a time included in the received information;

generating an identifier, using generating circuitry, for the
mobile user device based on the obtained information
associated with each of the plurality of applications
installed on the mobile user device and based on the
calculated clock skew, wherein the generated identifier
obscures identifying information of the plurality of
applications;

US 9,477,635 Bl

13
identifying, using identifying circuitry, an identity of the
mobile user device using the generated identifier
responsive to receiving the ad request;
selecting, using selecting circuitry, an ad from a plurality
of ads based on the identifying the identity of the
mobile user device; and

sending, using sending circuitry, the selected ad to the

mobile user device responsive to the received ad
request.

20. A computer program product tangibly embodied in a
non-transitory computer-readable storage medium and com-
prising instructions that when executed by a processor
perform a method for generating an identifier for a mobile
user device, the method comprising:

receiving, using receiving circuitry, from the mobile user 15

device, information associated with each of a plurality

of applications installed on the mobile user device;
generating an identifier for the mobile user device using

generating circuitry and the received information asso-

14

ciated with each of the plurality of applications
installed on the mobile user device, wherein the infor-
mation is processed to generate an identifier that
obscures identifying information of the plurality of
applications and wherein generating the identifier
includes calculating the identifier using numerical val-
ues associated with the information associated with
each of the plurality of applications;

determining, using determining circuitry, a numerical
value of a previously stored identifier for the mobile
user device is within a predetermined percentage of a
numerical value of the generated identifier;

using the previously stored identifier, using collecting
circuitry, to collect information about activity of the
mobile user device on a network including activity
associated with more than one of the plurality of
applications.

